Electric cables used to transmit information are quite different from power cables, both in function and in design. Power cables are designed for high voltages and high current loads, whereas both voltage and current in a communication cable are small. Power cables operate on direct current or low-frequency alternating current, while communication cables operate at higher frequencies. A power cable usually has not more than three conductors, each of which may be 1 inch (2.5 cm) or more in diameter; a telephone cable may have several thousand conductors, the diameter of each being less than 0.05 inch (0.125 cm).
Protective coverings for electric communication cables are similar to those for electric power cables. They usually consist of an aluminum or lead-alloy tube or of a combination of metallic strips and thermoplastic materials. The insulation of a telephone cable is composed of dry cellulose (in the form of paper tape wrapped around the conductor or paper pulp applied to the conductor) or of polyethylene. The insulation thickness is a few hundredths of an inch or less. A coaxial cable, which first gained widespread use during World War II, is a two-conductor cable in which one of the conductors takes the form of a tube while the other (smaller but also circular in cross section) is supported, with a minimum of solid insulation, at the centre of the tube. Several of these coaxial units may be assembled within a common jacket, or sheath.
The construction of long submarine cables for either telephone or telegraph service is somewhat different from that discussed previously. A transatlantic cable for telegraphs was first completed in 1858 and for telephones in 1956; a fibre-optic cable first spanned the Atlantic Ocean in 1988. See also undersea cable.